Abstract

A special shock tube process combining a reflected expansion wave with a weak shock wave is analyzed and calibrated. The process is employed to transfer water vapor carried in argon into a known supersaturated state for a short period of time (0.5 ms). During that period steady state homogeneous nucleation takes place followed by condensational growth. Nucleation and growth rates are measured by a 90° Mie-light scattering technique in the temperature range 200–260 K. The results are compared with existing theoretical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call