Abstract

ABSTRACTIsothermal crystallization behavior of as-deposited thin amorphous Si50Ge50 films (∼1000Å-thick) at 580°C has been investigated using transmission electron Microscopy (TEM). The crystal counting method was employed in order to obtain directly the two-dimensional steady-state crystal nucleation rate of 3.9×103 #/cm2sec (equivalent volumetric nucleation rate of 3.4×108 #/cm3sec). The Modified two-dimensional Johnson-Mehl-Avrami analysis, in which the growth rate of the crystals was the only adjustable parameter, and in which the time-dependent nucleation rate and the size effect associated with the onset of the observation are considered, was developed in order to extract the crystal growth rate of 16.5 Å/sec. When compared to the crystallization of a-Si films, these nucleation and growth rates confirm the observation that it is possible to achieve significantly faster crystallization at lower temperatures while producing substantially better Microstructures (i.e., > 5 μ grain-sized poly-Si50Ge50 obtained within two hours at 580°C vs. 1–2Μm grain-sized poly-Si obtained in about > 10 hours at 600°C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call