Abstract

The nucleation and growth mechanism of functional oxides has a direct bearing on the structural and electronic properties of the deposit. We study the effect of electrolyte pH and deposition potential on the nucleation and growth of Cu2O on polycrystalline metal oxide (FTO) & metal (Au) substrates. Modelling of the recorded current-time transients indicates that both instantaneous and progressive nucleation occur with growth limited by diffusion or lattice incorporation of electro-active species or both. The preferred orientation of Cu2O shows a strong dependence on electrolyte pH. The films are (100) oriented on both substrates at pH 9 except at high applied potential on FTO where the orientation changes to (111). Interestingly, irrelevant of electrolyte pH, the grain size of Cu2O decreases with potential on FTO whereas it increases on Au substrates. We attribute this to a difference in the number of active nucleation sites between the two substrates. The nucleation and growth at pH 12 is observed to be dependent both on diffusion and lattice incorporation of electro-active species. Additionally, the films are primarily (111) oriented on both substrates, which is correlated to the availability of OH− ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call