Abstract

In a seed-mediated synthesis, nanocrystal growth is often described by assuming the absence of homogeneous nucleation in the solution. Here we provide new insights into the nucleation and growth mechanisms underlying the formation of bimetallic nanodendrites that are characterized by a dense array of Pt branches anchored to a Pd nanocrystal core. These nanostructures can be easily prepared by a one-step, seeded growth method that involves the reduction of K2PtCl4 by L-ascorbic acid in the presence of 9-nm truncated octahedral Pd seeds in an aqueous solution. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that both homogeneous and heterogeneous nucleation of Pt occurred at the very early stages of the synthesis and the Pt branches grew through oriented attachment of small Pt particles that had been formed via homogeneous nucleation. These new findings contradict the generally accepted mechanism for seeded growth that only involves heterogeneous nucleation and simple growth via atomic addition. We have also investigated the electrocatalytic properties of the Pd-Pt nanodendrites for the oxygen reduction and formic acid oxidation reactions by conducting a comparative study with foam-like Pt nanostructures prepared in the absence of Pd seeds under otherwise identical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.