Abstract

Kinetics of struvite crystallization were studied to gain a better understanding of intentional struvite formation in fluidized bed reactors. Mechanisms controlling nucleation were studied in the laboratory by induction time experiments. pH monitoring proved to be an effective method of induction time determination, during the induction period. The induction period, when nucleation was the controlling process for struvite crystal formation, was found to be primarily reaction controlled, with minor transport influence. The metastable region for struvite was explored in this study. The solubility and supersolubility curves, which are the boundaries of the metastable region, were observed to be almost parallel straight lines in the concentration range studied. The growth rate of struvite determined in a fluidized bed reactor was mainly transport controlled. With the determination of the mass-transfer coefficient and surface-reaction coefficient for a specified condition, a two-step linear growth rate model for struvite growth determination in a fluidized bed reactor has been proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call