Abstract

Nucleated polylactide (PLA) blend films with various types and contents of nucleating agent were prepared in a twin-screw extruder. The influences of type and level of nucleating agent on the tensile, thermal, and morphological properties of the blend films were investigated. Furthermore, effects of different cooling rates (1–10 °C min−1) on non-isothermal processes and various crystallization temperatures (Tc) (100–125 °C) on isothermal conditions were used to evaluate the crystallization behaviors and kinetics of these films by differential scanning calorimeter (DSC) and polarized light microscope. Nanoprecipitated calcium carbonate (NPCC) and talc were used as a nucleating agent at different concentrations from 0 to 2 phr. The results showed that the tensile properties, thermal stability, spherulitic morphology, and crystallization behaviors of the nucleated PLA blends significantly depended upon the addition of nucleating agent. Tensile properties of the blends were improved with increasing of nucleating agent contents; in contrast, its thermal stability decreased. These behaviors were similarly observed in both nucleated PLA blends with NPCC and talc. Furthermore, DSC curves revealed that NPCC and talc could be a proficient nucleating agent for PLA, resulting in the increments of Tc, crystallization rate, degree of crystallinity (χc), and spherulitic density of nucleated PLA films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.