Abstract

This article deals with an experimental study of the influence of a DC uniform electric field on the nucleate boiling heat transfer. Electrohydrodynamic (EHD) effects on heat transfer coefficients for dielectric liquids are quantitatively investigated by performing experiments on various liquids with different properties. In these experiments, n-pentane, R-113, and R-123 are used as working fluids and the boiling phenomenon takes place on a horizontal plane copper surface. The experimental results have shown: (1) a threefold increase of nucleate pool boiling heat transfer coefficients, (2) a threefold increase of the critical heat flux (CHF), and (3) the disappearance of the hysteresis phenomenon. For nucleate pool boiling and CHF regimes, heat transfer laws based on dimensionless numbers are proposed. The results obtained by the proposed EHD model are in good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.