Abstract

In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 °C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001%, 0.001%, 0.01%, and 0.05%. For the dispersion of CNTs, polyvinyl pyrrolidone polymer is used in distilled water. Pool boiling HTCs are taken from 10 kW/m 2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the aqueous solutions with CNTs are lower than those of pure water in the entire nucleate boiling regime. On the other hand, critical heat flux of the aqueous solution is enhanced greatly showing up to 200% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat fluxes and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results in.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.