Abstract

The molecular nature of the ‘unconventional viruses’ that cause slow, progressive brain deterioration is still poorly understood. As part of a reinvestigation of potential agent-specific nucleic acids, we developed a protocol for enriching agent-specific sequences. This protocol uses extensive micrococcal nuclease digestion followed by rate zonal sucrose sedimentation. Most of the infectivity in the gradient (84%) had a characteristic mean size of ~ 120S, and was resolved from 70% of a host glycoprotein (PrP) that can cosediment with infectivity. In infectious size fractions, nucleic acids were reduced approximately one million-fold with respect to starting brain homogenate, and specific purification of infectivity was ~ 100 000-fold with respect to nucleic acid. Using a novel polymerase chain reaction strategy, we were able to amplify RNA species in these fractions. Remarkably, host polyadenylated sequences of 1 to over 4 kb were detected in the nuclease-protected infectious fractions. These strategies set the stage for the identification of similar nucleic acids that may be specific for the CJD agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.