Abstract

Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated rapidly in cells stimulated by various extracellular signals. With stimulation of quiescent cells by growth factors, activated p42/p44 MAP kinases rapidly translocate to the nucleus, where they induce immediate early gene transcription. The MAP kinase signal transduction pathway represents an important mechanism by which growth factors regulate cellular events such as cell cycle progression or cell growth. In the present study, p42MAPK (ERK2) was studied during the ongoing cell cycle of Chinese hamster ovary cells synchronized by mitotic shake-off. We show that protein expression of p42MAPK increased in mid-G1 and that MAP kinase is phosphorylated during G1, as visualized by a gel-mobility shift and by the use of phosphospecific antibodies. This phosphorylation appeared to occur in the cytoplasm rather than at the plasma-membrane. In addition, phosphorylated p42MAPK was found to translocate to the nucleus during late/mid-G1. Treatment of cells with MEK inhibitor PD098059 prevented the phosphorylation and nuclear translocation of MAP kinase and DNA synthesis. Thus, nuclear translocation of p42MAPK is not restricted to the G0/G1 transition but occurs in every cell cycle and seems to be required for cell cycle progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.