Abstract

Human glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous system (CNS). Fibroblast growth factor-2 (FGF2) belongs to the FGF superfamily and functions as a potential oncoprotein in GBM. FGF2 has low molecular weight (18K) and high molecular weight (HMW) isoforms. Nuclear accumulation of HMW-FGF2 strongly promotes glioblastoma cell proliferation, yet mechanism governing such cellular distribution remains unexplored. We investigated the mechanisms regulating FGF2 cellular localization in T98G human brain glioblastoma cells. We found HMW-FGF2, but not 18K-FGF2, is primarily located in the nucleus and interacts with nuclear transport protein Karyopherin-β2/Transportin (Kapβ2). SiRNA-directed Kapβ2 knockdown significantly reduced HMW-FGF2's nuclear translocation. Moreover, inhibiting Ran GTPase activity also resulted in decreased HMW-FGF2 nuclear accumulation. Proliferation of T98G cells is greatly enhanced with transfections HMW-FGF2. Decreased PTEN expression and activated Akt signaling were observed upon HMW-FGF2 overexpression and might mediate pro-survival effect of FGF2. Interestingly, addition of nuclear localization signal (NLS) to 18K-FGF2 forced its nuclear import and dramatically increased cell proliferation and Akt activation. These findings demonstrated for the first time the molecular mechanisms for FGF2's nuclear import, which promotes GBM cell proliferation and survival, providing novel insights to the development of GBM treatments.

Highlights

  • Fibroblast growth factors (FGFs) superfamily consists of 22 FGF genes in mice and humans [1]

  • To study the localization of both 18K and high molecular weight (HMW) Fibroblast growth factor-2 (FGF2) in glioblastoma cells, T98G cell line derived from human glioblastoma was transfected with HA-tagged constructs expressing HMW-FGF2 (HA-HMW) or 18K-FGF2 (HA-18K)

  • We investigated the role of FGF2, in the regulation of proliferation and survival of glioblastoma multiforme (GBM) tumor cells

Read more

Summary

Introduction

Fibroblast growth factors (FGFs) superfamily consists of 22 FGF genes in mice and humans [1]. Emerging evidence suggests that FGF2 functions as a potential oncogenic protein driving a variety of tumor malignancies. Human melanoma commonly expresses high levels of FGFR1 and FGF2. Antisense-mediated inhibition of FGF2 or FGFR1 led to growth regression of xenografts formed by human melanoma cells [5]. Up-regulated FGF2-FGFR1 signaling is implicated in the pathogenesis of prostate cancer, small cell lung cancer and glioblastoma multiforme (GBM) [6, 7]. Previous study demonstrated that high FGF2 mRNA expression is observed in over 94% of human glioblastomas [8]. It’s been shown that high FGF2 expression promotes human glioma’s malignancy [9]. Studies suggested that FGF2 exerts anti-apoptotic function through up-regulating anti-apoptotic genes www.impactjournals.com/oncotarget

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.