Abstract

Nuclear transfer (NT) provides an opportunity for clonal amplification of a nuclear genome of interest. Here, we report NT-mediated reprogramming with frozen mouse cells that were nonviable because they were frozen at -80 degrees C for up to 342 days without a cryoprotectant. We derived eight embryonic stem (ES) cell lines from cloned blastocysts by conventional NT procedure and five ntES (nuclear transfer embryonic stem) cell lines by a modified NT procedure in which a whole cell instead of a nucleus was injected into an enucleated oocyte. Chromosome analysis revealed that 12 of 13 ntES cell lines have normal karyotypes. On injection of ntES cells into tetraploid blastocysts to generate clonal mice that are nearly completely ntES-cell derived, live pups were obtained; four clonal mice survived until adulthood. On injection of ntES cells into diploid blastocysts, chimeric mice with a high somatic ES cell contribution were generated; germ-line transmission was obtained. Our findings indicate that chromosome stability and genomic integrity can be maintained in mouse somatic cells after freezing without cryoprotection and that NT and ES cell techniques can rescue the genome of these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call