Abstract

Nuclear organization of genomic DNA affects DNA damage and repair processes, and yet its impact on mutational landscapes in cancer genomes remains unclear. Here we analyzed genome-wide somatic mutations from 366 samples of 6 cancer types. We found that lamina-associated regions, which are typically localized at the nuclear periphery, displayed higher somatic mutation frequencies compared to the inter-lamina regions at the nuclear core. This effect remained even after adjusting for features such as GC%, chromatin, and replication timing. Furthermore, mutational signatures differed between the nuclear core and periphery, indicating differences in the patterns of DNA damage and/or DNA repair processes. For instance, smoking and UV-related signatures were more enriched in the nuclear periphery. Substitutions at certain motifs were also more common in the nuclear periphery. Taken together, we found that the nuclear architecture influences mutational landscapes in cancer genomes beyond the effects already captured by chromatin and replication timing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.