Abstract

The nucleus is one of the most important cellular organelles. Chitosan-grafted poly-(N-3-carbobenzyloxy-lysine) (CCL) decorated with human immunodeficiency virus-1 transactivator of transcription (TAT) can co-deliver p53 and doxorubicin into the nucleus simultaneously, such that their antitumor functions are exerted. However, TAT-CCL has been shown to have an anti-tumor effect only in vitro; the effect in vivo was unsatisfactory. Here, a unique nucleus-targeted delivery system based on amidized TAT (aTAT)-CCL with aTAT functional on the surface was designed to achieve a highly efficient nucleus-targeting gene and drug delivery system for effective cancer cell elimination in vitro and in vivo. In this delivery system, TAT is amidized to inhibit its nonspecific interactions. Confocal laser scanning microscopy observations revealed that if aTAT-CCL was incubated in pH 5.0 acetate buffer solution for 24 h before use (named aTAT-CCL-HB), more aTAT-CCL-HB entered the nucleus compared with aTAT-CCL or CCL. aTAT-CCL-HB can also achieve high gene transfection and drug delivery efficiencies and low viability in HepG2 cells. However, only aTAT-CCL achieved extensive circulation in the blood compartment and high antitumor activity in vivo. Amidization of TAT in vectors may become a promising strategy for nucleus-targeted delivery systems, especially in in vivo applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.