Abstract

We developed a deformed quasi-particle random phase approximation (DQRPA) to describe the Gamow–Teller (GT) transitions on even–even neutron-rich nuclei. To describe deformed nuclei, we exploited the deformed axially symmetric Woods–Saxon potential, the deformed BCS, and the deformed QRPA with realistic two-body interaction calculated by Brueckner G-matrix based on Bonn CD potential. The deformed single particle states are expanded in terms of the spherical harmonic oscillator basis in order to take the realistic G-matrix stored in the spherical basis. We calculated GT strength distributions, B(GT), of two nuclei 12,14Be for many different deformation parameter β 2 values as a function of the excitation energy E ex w.r.t. the ground state of a parent nucleus. Our results for 12Be predict to prefer a prolate shape and B(GT) results of 14Be turn out to be independent of the β 2 values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.