Abstract

Nuclear spirals can provide a wealth of information about the nuclear potential in disc galaxies. They form naturally as a gas response to non-axisymmetry in the gravitational potential, even if the degree of this asymmetry is very small. Linear wave theory well describes weak nuclear spirals, but stronger asymmetries in the potential induce waves beyond the linear regime, which appear as spiral shocks. If a central massive black hole (MBH) is present, spiral shocks can extend all the way to its immediate vicinity, and generate gas inflow up to 0.03 M yr−1. This coincides with the accretion rates needed to power local Active Galactic Nuclei.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call