Abstract

We have measured longitudinal nuclear relaxation rates of {sup 129}Xe in Xe-N{sub 2} mixtures at densities below 0.5 amagats in a magnetic field of 8.0 T. We find that intrinsic spin relaxation in this regime is principally due to fluctuations in the intramolecular spin-rotation (SR) and chemical-shift-anisotropy (CSA) interactions, mediated by the formation of {sup 129}Xe-Xe persistent dimers. Our results are consistent with previous work done in one case at much lower applied fields where the CSA interaction is negligible and in another case at much higher gas densities where transient xenon dimers mediate the interactions. We have verified that a large applied field suppresses the persistent-dimer mechanism, consistent with standard relaxation theory, allowing us to measure room-temperature gas-phase relaxation times T{sub 1} for {sup 129}Xe greater than 25 h at 8.0 T. These data also yield a maximum possible low-field T{sub 1} for pure xenon gas at room temperature of 5.45{+-}0.2 h. The coupling strengths for the SR and CSA interactions that we extract are in fair agreement with estimates based both on previous experimental work and on ab initio calculations. Our results have potential implications for the production and storage of large quantities of hyperpolarized {sup 129}Xe formore » use in various applications.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.