Abstract

Nuclear spin relaxation is studied in n-GaAs thick layers and microcavity samples with different electron densities. We reveal that both in metallic samples where electrons are free and mobile, and in insulating samples, where electrons are localized, nuclear spin relaxation is strongly enhanced at low magnetic field. The origin of this effect could reside in the quadrupole interaction between nuclei and fluctuating electron charges, that has been proposed to drive nuclear spin dynamics at low magnetic fields in the insulating samples. The characteristic values of these magnetic fields are given by dipole-dipole interaction between nuclei in bulk samples, and are greatly enhanced in microcavities, presumably due to additional strain, inherent to micro and nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.