Abstract

The differential equations which describe the relaxation of macroscopic observables associated with nuclear spins in homonuclear diatomic molecules are derived using an expansion of the nuclear spin density matrix in terms of irreducible tensors. It is shown, using an intramolecular quadrupole mechanism, that the only difference between nuclear spin relaxation of the ortho- and para-species arises from the rotational states being restricted to odd and even values. This difference is vanishingly small at high temperatures so that the relaxation equations for nuclear magnetization become identical for both species. A previous paper predicting a difference even at high temperatures is shown to be in error and is corrected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.