Abstract

Nuclear lipid metabolism is implicated in various processes, including transcription, splicing, and DNA repair. Sphingolipids play roles in numerous cellular functions, and an emerging body of literature has identified roles for these lipid mediators in distinct nuclear processes. Different sphingolipid species are localized in various subnuclear domains, including chromatin, the nuclear matrix, and the nuclear envelope, where sphingolipids exert specific regulatory and structural functions. Sphingomyelin, the most abundant nuclear sphingolipid, plays both structural and regulatory roles in chromatin assembly and dynamics in addition to being an integral component of the nuclear matrix. Sphingosine-1-phosphate modulates histone acetylation, sphingosine is a ligand for steroidogenic factor 1, and nuclear accumulation of ceramide has been implicated in apoptosis. Finally, nuclear membrane-associated ganglioside GM1 plays a pivotal role in Ca(2+) homeostasis. This review highlights research on the factors that control nuclear sphingolipid metabolism and summarizes the roles of these lipids in various nuclear processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.