Abstract

The finite nuclear-size effect on the leading bound-electron g factor and the one-loop QED corrections to the bound-electron g factor is investigated for the ground state of hydrogen-like ions. The calculation is performed to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear charge and α is the fine structure constant) and for the Fermi model of the nuclear charge distribution. In the result, theoretical predictions for the isotope shift of the 1s bound-electron g factor are obtained, which can be used for the determination of the difference of nuclear charge radii from experimental values of the bound-electron g factors for different isotopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call