Abstract

BackgroundNuclear receptors (NRs) are an ancient superfamily of metazoan transcription factors that play critical roles in regulation of reproduction, development, and energetic homeostasis. Although the evolutionary relationships among NRs are well-described in two prominent clades of animals (deuterostomes and protostomes), comparatively little information has been reported on the diversity of NRs in early diverging metazoans. Here, we identified NRs from the phylum Ctenophora and used a phylogenomic approach to explore the emergence of the NR superfamily in the animal kingdom. In addition, to gain insight into conserved or novel functions, we examined NR expression during ctenophore development.ResultsWe report the first described NRs from the phylum Ctenophora: two from Mnemiopsis leidyi and one from Pleurobrachia pileus. All ctenophore NRs contained a ligand-binding domain and grouped with NRs from the subfamily NR2A (HNF4). Surprisingly, all the ctenophore NRs lacked the highly conserved DNA-binding domain (DBD). NRs from Mnemiopsis were expressed in different regions of developing ctenophores. One was broadly expressed in the endoderm during gastrulation. The second was initially expressed in the ectoderm during gastrulation, in regions corresponding to the future tentacles; subsequent expression was restricted to the apical organ. Phylogenetic analyses of NRs from ctenophores, sponges, cnidarians, and a placozoan support the hypothesis that expansion of the superfamily occurred in a step-wise fashion, with initial radiations in NR family 2, followed by representatives of NR families 3, 6, and 1/4 originating prior to the appearance of the bilaterian ancestor.ConclusionsOur study provides the first description of NRs from ctenophores, including the full complement from Mnemiopsis. Ctenophores have the least diverse NR complement of any animal phylum with representatives that cluster with only one subfamily (NR2A). Ctenophores and sponges have a similarly restricted NR complement supporting the hypothesis that the original NR was HNF4-like and that these lineages are the first two branches from the animal tree. The absence of a zinc-finger DNA-binding domain in the two ctenophore species suggests two hypotheses: this domain may have been secondarily lost within the ctenophore lineage or, if ctenophores are the first branch off the animal tree, the original NR may have lacked the canonical DBD. Phylogenomic analyses and categorization of NRs from all four early diverging animal phyla compared with the complement from bilaterians suggest the rate of NR diversification prior to the cnidarian-bilaterian split was relatively modest, with independent radiations of several NR subfamilies within the cnidarian lineage.

Highlights

  • Nuclear receptors (NRs) are an ancient superfamily of metazoan transcription factors that play critical roles in regulation of reproduction, development, and energetic homeostasis

  • TBLASTN searches of the Mnemiopsis genome and BLASTP searches of the proteome using only the deoxyribonucleic acid (DNA)-binding domain (DBD) from sponge and anemone hepatocyte nuclear factor 4 (HNF4) resulted in weak matches that were on separate contigs from the two predicted genes from Mnemiopsis with high similarity to the ligand-binding domain (LBD)

  • Nuclear receptors from the ctenophores Mnemiopsis leidyi and Pleurobrachia pileus basic local alignment search tool (BLAST) queries of the Mnemiopsis genome and gene models resulted in two hits with significant similarity to the LBD of NRs from diverse metazoans

Read more

Summary

Introduction

Nuclear receptors (NRs) are an ancient superfamily of metazoan transcription factors that play critical roles in regulation of reproduction, development, and energetic homeostasis. NRs have been reported from three of the four classes of cnidarians (Anthozoa [3,5], Cubozoa [9], and Hydrozoa [2]), including the full complement from the sea anemone Nematostella vectensis [5], two sponges [4,6,10], and one placozoan [11,12] Phylogenetic analyses of these NRs have shown that most of these genes belong to NR family 2. The exceptions are: (1) one NR family 3 member from the placozoan Trichoplax adhaerens, (2) one ortholog to NR family 6 from the cnidarian Nematostella, and (3) three genes from Nematostella that form an outgroup to NR families 1 and 4 Taken together, these data suggest that the evolution of NRs may be complex and, more importantly, that early diverging metazoans are the appropriate groups to study in order to understand how and when the NR superfamily has evolved and diversified

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.