Abstract

Introduction: Alzheimer's disease (AD) is characterized by the accumulation and extensive deposition of amyloid β (Aβ) in the parenchyma of the brain. This accumulation of amyloid is associated with perturbations in synaptic function, impairments in energy metabolism and induction of a chronic inflammatory response which acts to promote neuronal loss and cognitive impairment.Areas covered: Currently, there are no drugs that target the underlying mechanisms of AD. Here, we propose a class of nuclear receptors as novel and promising new therapeutic targets for AD. This review summarizes the literature on nuclear receptors and their effects on AD-related pathophysiology.Expert opinion: Nuclear receptors are attractive targets for the treatment of AD due to their ability to facilitate degradation of Aβ, affect microglial activation and suppress the inflammatory milieu of the brain. Liver X receptor agonists have proven difficult to move into clinical trials as long-term treatment results in hepatic steatosis. It is our view that PPAR-γ activation remains a promising avenue for the treatment for AD; however, the poor BBB permeability of the currently available agonists and the negative outcome of the Phase III clinical trials are likely to diminish interest in pursuing this target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.