Abstract
A virtual reality learning module to train nuclear engineering students in reactor operations to understand reactor power excursions has been developed. The learning module was taught with an Oculus-2 headset and controllers (now called Meta Quest 2). The class was comprised of 71 undergraduate students, mostly in their fourth year of the nuclear engineering curriculum at Texas A&M University. The learning module simulation of power excursion, called pulsing the reactor, was modeled after the Texas A&M Engineering Experiment Station TRIGA reactor. First, the students visited the TRIGA reactor for pulsing and answered a technical quiz on the subject. Next, the students performed pulsing in the equivalent virtual reality module developed in this work. One of the primary learning objectives in the laboratory exercise was the role of passive and active safety mechanisms in a rapid reactivity insertion and power excursion. Data from the actual reactor visit showed that most students did not understand a key passive safety mechanism during the reactor visit. However, the students showed a notable improvement in their understanding of the safety mechanisms after the virtual reality reactor visit. When asked if the virtual reality learning module would have made the quiz at the reactor easier, 96% of the students reported that at least one of the quiz questions would be have been better answerable with the virtual reality module. Students also noted that the virtual reality module needed to expand its scope to include more details and teaching components. Although most students were reluctant to completely replace the pulsing reactor visit with its virtual reality module version available at the time of the study, they appreciated it as a learning reinforcement tool. Student opinion may change more favorably in the future with continued improvements and enhancements of the module.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.