Abstract

Nuclear reactions of high-energy protons with treatment equipment, air, and patient tissue during proton therapy generate residual radioactivity and secondary particles including protons, deuterons, alphas, and neutrons. The most up-to-date versions of INCL++ (v5.2.9), TALYS (v1.8), EMPIRE (v3.2.2 Malta), and ALICE/ASH were used in this study to calculate the excitation functions of proton-induced reactions with carbon, nitrogen, oxygen, aluminum, calcium, iron, nickel, copper, zinc, tin, tungsten, and lead nuclei. The cross sections of different nuclear reaction mechanisms, gamma particles, and residual radionuclides were calculated. The obtained results were compared with available experimental data and the ENDF/B-VII.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.