Abstract
The photon shielding performances of five different borosilicate-based glasses were investigated in this study using the FLUKA, GEANT4 and MATLAB codes, as well as the XCOM program, at photon energies ranging from 0.03 to 15 MeV. In this context, dependencies of the photon attenuation features with the variation of the photon energy and the chemical compositions have been carefully evaluated with Monte Carlo simulation and theoretical evaluation tools. The mass attenuation coefficient values and effective atomic numbers obtained for BaO-doped G5 glasses are found to be higher than those derived for G1-G4 samples. In other words, the Zeff results showed that high Z-elements such as Ba in a suitable amount should be inserted into the glass composition in order to improve the photon attenuation capability of the borosilicate glasses. The HVLs, TVLs, and MFPs of the studied borosilicate glasses are determined further, and the gamma shielding characteristics of the analyzed samples are found to be associated to the density of the glass, implying that high-density glass can be used for high-level attenuation performance. The exposure buildup factor (EBF) values have been further estimated via the G-P fitting approach. The results of such investigations, according to the work given, may be valuable in designing and fabricating new borosilicate-based glasses, which can then shield against potential radiation damage to environmental health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Radiation Physics and Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.