Abstract

We perform path-integral molecular dynamics (PIMD) simulations of H2O and D2O using the q-TIP4P/F model. Simulations are performed at P = 1 bar and over a wide range of temperatures that include the equilibrium (T≥ 273 K) and supercooled (210 ≤T < 273 K) liquid states of water. The densities of both H2O and D2O calculated from PIMD simulations are in excellent agreement with experiments in the equilibrium and supercooled regimes. We also evaluate important thermodynamic response functions, specifically, the thermal expansion coefficient αP(T), isothermal compressibility κT(T), isobaric heat capacity CP(T), and static dielectric constant ε(T). While these properties are in excellent [αP(T) and κT(T)] or semi-quantitative agreement [CP(T) and ε(T)] with experiments in the equilibrium regime, they are increasingly underestimated upon further cooling. It follows that the inclusion of nuclear quantum effects in PIMD simulations of (q-TIP4P/F) water is not sufficient to reproduce the anomalous large fluctuations in density, entropy, and electric dipole moment characteristic of supercooled water. It has been hypothesized that water may exhibit a liquid-liquid critical point (LLCP) in the supercooled regime at P > 1 bar and that such a LLCP generates a maximum in CP(T) and κT(T) at 1 bar. Consistent with this hypothesis and in particular, with experiments, we find a maximum in the κT(T) of q-TIP4P/F light and heavy water at T≈ 230-235 K. No maximum in CP(T) could be detected down to T≥ 210 K. We also calculate the diffusion coefficient D(T) of H2O and D2O using the ring-polymer molecular dynamics (RPMD) technique and find that computer simulations are in remarkable good agreement with experiments at all temperatures studied. The results from RPMD/PIMD simulations are also compared with the corresponding results obtained from classical MD simulations of q-TIP4P/F water where atoms are represented by single interacting sites. Surprisingly, we find minor differences in most of the properties studied, with CP(T), D(T), and structural properties being the only (expected) exceptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.