Abstract

The simulation of nuclear quantum effects (NQEs) is crucial for an accurate description of systems and processes involving light nuclei, such as hydrogen atoms. Within the last years, the importance of those effects has been highlighted for a vast range of systems with tremendous implications in chemistry, biology, physics, and materials sciences. However, while electronic structure theory methods have become routine tools for quantum chemical investigations, there is still a lack of approaches to address NQEs that are computationally accessible and straightforward to use. To address this, we present the first combination of the nuclear-electronic orbital Hartree-Fock approach with both local and density fitting approximations (LDF-NEO-HF). This results in a low-order scaling approach that enables the inclusion of NQEs for large systems within a fraction of a day and for small to medium size systems in minutes. Moreover, we demonstrate the qualitative accuracy and robustness of our approach to retrieve NQEs for three real-use cases motivated by chemical, biological, and materials science applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.