Abstract

AbstractNuclear quantum and H/D isotope effects of bridging and terminal hydrogen atoms of diborane (B2H6) molecules were systematically studied by classical ab initio molecular dynamics (CLMD) and ab initio path integral molecular dynamics (PIMD) simulations with BHandHLYP/6‐31++G** level of theory at room temperature (298.15 K). Calculated results clearly show that H/D isotope effect appears in the distribution of hydrogen (deuterium) of B2H6 (B2D6). Geometry of B2H6 also plays a significant role in the nuclear quantum effect proved by PIMD simulations, but slightly deviated from its equilibrium structure when simulated via CLMD simulation. The bond lengths between boron atoms R (B1 … B2) and the bridging hydrogen atoms RHH (HB1 … HB2) of the B2H6 molecule obtained from PIMD simulations are slightly longer than those of the deuterated form of the diborane (B2D6) molecule. The principal component analysis (PCA) was also employed to distinguish the important modes of bridging hydrogen as related to the nuclear quantum and H/D isotope effects. The highest level of contribution obtained from PCA of PIMD simulations is bending, while various mixed vibrations with less contribution were also found. Therefore, the nuclear quantum and H/D isotope effects need to be taken into account for a better understanding of diborane geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.