Abstract

The E2F3 transcription factor has an established role in controlling cell cycle progression. In previous studies we have provided evidence that nuclear E2F3 overexpression represents a mechanism that drives the development of human bladder cancer and that determines aggressiveness in human prostate cancer. We have proposed a model in which E2F3 overexpression co-operates with removal of the E2F inhibitor pRB to facilitate cancer development. Since small cell lung cancers (SCLC) have one of the highest reported frequencies of functional abnormalities in the pRB protein (90%) of any human cancer, we wish to assess to what extent E2F3 would be overexpressed in this and other classes of human lung cancer. Immunohistochemical techniques were used to assess the E2F3 status in 428 samples of lung cancers, lung carcinoids, normal bronchial epithelium and normal lung tissue. E2F3 is overexpressed in 55-70% of squamous cell carcinomas and 79% of adenocarcinomas of the lung. In addition very high level expression of nuclear E2F3 is found in almost all small cell lung cancers analysed. When considered together with published data our observations indicate that co-operation between pRB functional knockouts and E2F3 overexpression may represent a mechanism of development of SCLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call