Abstract

Using tyrosine hydroxylase immunohistochemistry, we describe the nuclear parcellation of the catecholaminergic system in the brains of a lar gibbon (Hylobates lar) and a chimpanzee (Pan troglodytes). The parcellation of catecholaminergic nuclei in the brains of both apes is virtually identical to that observed in humans and shows very strong similarities to that observed in mammals more generally, particularly other primates. Specific variations of this system in the apes studied include an unusual high-density cluster of A10dc neurons, an enlarged retrorubral nucleus (A8), and an expanded distribution of the neurons forming the dorsolateral division of the locus coeruleus (A4). The additional A10dc neurons may improve dopaminergic modulation of the extended amygdala, the enlarged A8 nucleus may be related to the increased use of communicative facial expressions in the hominoids compared to other primates, while the expansion of the A4 nucleus appears to be related to accelerated evolution of the cerebellum in the hominoids compared to other primates. In addition, we report the presence of a compact division of the locus coeruleus proper (A6c), as seen in other primates, that is not present in other mammals apart from megachiropteran bats. The presence of this nucleus in primates and megachiropteran bats may reflect homology or homoplasy, depending on the evolutionary scenario adopted. The fact that the complement of homologous catecholaminergic nuclei is mostly consistent across mammals, including primates, is advantageous for the selection of model animals for the study of specific dysfunctions of the catecholaminergic system in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call