Abstract

We present a system identification method for problems with partially missing inputs and outputs. The method is based on a subspace formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing input and output values as the optimization variables. We also present a fast implementation of the alternating direction method of multipliers (ADMM) to solve regularized or non-regularized nuclear norm optimization problems with Hankel structure. This makes it possible to solve quite large system identification problems. Experimental results show that the nuclear norm optimization approach to subspace identification is comparable to the standard subspace methods when no inputs and outputs are missing, and that the performance degrades gracefully as the percentage of missing inputs and outputs increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.