Abstract
The tumour selective ability of the boron compound boronophenylalanine (BPA), today used in Boron Neutron Capture Therapy in Sweden, has been investigated with the Lund Nuclear Microprobe. The tumour to tissue ratio of the boron concentration, as well as the location of boron within the cells, is critical for the efficiency of the therapy. It is desirable that the boron is accumulated as close as possible to the cell nucleus, since the alpha particles produced in the 10B(n,α) 7Li reaction only have a range of about 10 microns, i.e. a cell diameter. The nuclear reaction 11B(p,α)2α, which has an especially high cross-section (300 mb) for 660 keV protons, has been used to analyse brain tissue from BPA-injected rats. Previous studies on other boron compounds have shown significant background problems when the alpha particles are detected in the backward direction. By a specially designed set-up, alpha particles in the forward and backward direction are detected simultaneously, and only the coincidences between the two directions are considered to be true boron events. In this way we could achieve excellent background suppression. The analysis shows that BPA indeed is tumour selective. Quantifications show a boron abundance of 150 ± 20 ng/cm 2 in normal tissue and 567 ± 70 ng/cm 2 in tumour tissue. If the rat is fed with l-dopa before the injection of BPA the uptake increases 3–4 times. The boron is homogeneously distributed in the cellular structure and no specific intracellular accumulation has been shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.