Abstract

In the present work, the differential cross sections for small-angle proton elastic scattering on the 12,14Be nuclei were measured in inverse kinematics, using secondary radioactive beams with energies near 700 MeV/u produced with the fragment separator FRS at GSI. The main part of the experimental setup was the active target IKAR, which was used simultaneously as a target and a detector for the recoil protons. Auxiliary detectors for projectile tracking and isotope identification completed the setup. The measured differential cross sections were analyzed using the Glauber multiple-scattering theory. For the evaluation of the data several phenomenological nuclear-matter density parametrizations and a sum of Gaussian parametrization were used. The nuclear-matter radii and radial density distributions of the isotopes 12,14Be were deduced. Extended nuclear-matter density distributions were observed in both isotopes, and the halo structure of 14Be was confirmed. The results were also compared with microscopic few-body and fermionic molecular dynamics model calculations concerning the structure of these neutron-rich nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call