Abstract

The nuclear matrix elements of neutrinoless double-$\beta$ decay for nuclei $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, and $^{150}$Nd are studied within the triaxial projected shell model, which incorporates simultaneously the triaxial deformation and quasiparticle configuration mixing. The low-lying spectra and the $B(E2:0^+\rightarrow2^+)$ values are reproduced well. The effects of the quasiparticles configuration mixing, the triaxial deformation, and the closure approximation on the nuclear matrix elements are studied in detail. For nuclei $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, and $^{150}$Nd, the nuclear matrix elements are respectively reduced by the quasiparticle configuration mixing by 6%, 7%, 2%, 3%, and 4%, and enhanced by the odd-odd intermediate states by 7%, 4%, 11%, 20%, and 14%. Varying the triaxial deformation $\gamma$ from $0^\circ$ to $60^\circ$ for the mother and daughter nuclei, the nuclear matrix elements change by 41%, 17%, 68%, 14%, and 511% respectively for $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, and $^{150}$Nd, which indicates the importance of treating the triaxial deformation consistently in calculating the nuclear matrix elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.