Abstract
Nuclear magnetic resonance (NMR) spans diverse fields from biology to quantum science. Employing NMR on a floating object could unveil novel possibilities beyond conventional operational paradigms. Here, we observe NMR within a levitating microdiamond using the nuclear spins of nitrogen-14 atoms. By tightly confining the angular degrees of freedom of the diamond in a Paul trap, we achieve efficient hyperfine interaction between optically polarized electronic spins of nitrogen-vacancy centers and the ^{14}N nuclear spin, enabling nuclear spin polarization and quantum state readout revealing coherence times up to hundreds of microseconds. This represents the longest recorded spin coherence time in a levitated system, surpassing previous records by 3 orders of magnitude. Our results offer promise for various applications, including cooling macroscopic particles to their motional ground state and exploring geometric phases for gyroscopy.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.