Abstract

Changes in molecular mobility of water in pasta filata and non-pasta filata Mozzarella cheeses were investigated during the first 10 d of storage using nuclear magnetic resonance (NMR) relaxation techniques. Water in pasta filata Mozzarella was classified into two fractions by spin-spin relaxation times, T21 and T22, and corresponding proton intensities, A1 and A2, representing low and high molecular mobility, respectively. Increase in A1 (and decrease in A2) suggested that, there was a redistribution of water from more- to less-mobile fraction (from T22 to T21 fraction) during the first 10 d of storage. The NMR data did not indicate the two-state behavior of water molecules in non-pasta filata Mozzarella. However, the T2 values of non-pasta filata Mozzarella were comparable to the T21 values of pasta filata Mozzarella indicating that the molecular mobility of water in non-pasta filata Mozzarella is comparable to that of the less mobile water fraction in pasta filata Mozzarella. Generally, T2 and T1 values of pasta filata and non-pasta filata Mozzarella cheeses increased during the 10-d storage. This is believed to be due to structural changes in the protein matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.