Abstract
It was found previously that the proton-transfer reaction between trimethylammonium ion and trimethylamine in aqueous solution takes place via water. In the present investigation the number of water molecules involved in this reaction was determined. Proton exchange rates were determined from NMR measurements in trimethylamine—trimethylammonium chloride buffer solutions in O17-enriched water. It is concluded that one water molecule is involved in the transfer reaction. In the appendix, theoretical equations are derived for the dependence of the observed spin-echo decay rate on the 180° pulse rate for the case of fast exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.