Abstract

The geometry of hydrogen donor molecules bound to horseradish peroxidase was investigated using nuclear magnetic resonance techniques. Between resorcinol and 2-methoxy-4-methylphenol which showed different optical difference spectra, little difference was observed in the orientation of the molecules bound to horseradish peroxidase: the minimal distances between the enzyme iron and the protons of the phenol rings are in the range of 8.4-11.0 A. This situation was not greatly different for the third compound studied in this paper, benzhydroxamic acid, providing evidence against the view that its side chain coordinates to the heme iron. Furthermore, it was found that transferred nuclear Overhauser effect for the signals of these compounds was observable only when the heme peripheral 8-methyl proton signal was irradiated. These results, together with a hypothetical model of the enzyme structure obtained by computer-aided simulation procedures, suggest that the binding of these donor molecules and competitive inhibitors occur in the vicinity of the heme peripheral 8-methyl group, with hydrophobic interactions probably with Tyr-185 and with hydrogen bond with adjacent amino acid residues such as Arg-183.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call