Abstract

Paramagnetic relaxation enhancement is often explored in magnetic resonance imaging in terms of contrast agents and in biomolecular nuclear magnetic resonance (NMR) spectroscopy for structure determination. New ultrahigh-spin clusters are investigated with respect to their NMR relaxation properties. As their molecular size and therefore motional correlation times as well as their electronic properties differ significantly from those of conventional contrast agents, questions about a comprehensive characterization arise. The relaxivity was studied by field-dependent longitudinal and transverse NMR relaxometry of aqueous solutions containing Fe(III)(10)Dy(III)(10) ultrahigh-spin clusters (spin ground state 100/2). The high-field limit was extended to 32.9 T by using a 24 MW resistive magnet and an ultrahigh-frequency NMR setup. Interesting relaxation dispersions were observed; the relaxivities increase up to the highest available fields, which indicates a complex interplay of electronic and molecular correlation times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.