Abstract

We present constant-pressure Monte Carlo simulations of nuclear magnetic resonance (NMR) spectral parameters, nuclear magnetic shielding relative to the free atom as well as nuclear quadrupole coupling, for atomic xenon dissolved in a model thermotropic liquid crystal. The solvent is described by Gay-Berne (GB) molecules with parametrization kappa=4.4, kappa{'}=20.0 , and mu=nu=1 . The reduced pressure of P{*}=2.0 is used. Previous simulations of a pure GB system with this parametrization have shown that upon lowering the temperature, the model exhibits isotropic, nematic, smectic- A , and smectic- B /molecular crystal phases. We introduce spherical xenon solutes and adjust the energy and length scales of the GB-Xe interaction to those of the GB-GB interaction. This is done through first principles quantum chemical calculations carried out for a dimer of model mesogens as well as the mesogen-xenon complex. We preparametrize quantum chemically the Xe nuclear shielding and quadrupole coupling tensors when interacting with the model mesogen, and use the parametrization in a pairwise additive fashion in the analysis of the simulation. We present the temperature evolution of {129/131}Xe shielding and 131Xe quadrupole coupling in the different phases of the GB model. From the simulations, separate isotropic and anisotropic contributions to the experimentally available total shielding can be obtained. At the experimentally relevant concentration, the presence of the xenon atoms does not significantly affect the phase behavior as compared to the pure GB model. The simulations reproduce many of the characteristic experimental features of Xe NMR in real thermotropic LCs: Discontinuity in the value or trends of the shielding and quadrupole coupling at the nematic-isotropic and smectic-A-nematic phase transitions, nonlinear shift evolution in the nematic phase reflecting the behavior of the orientational order parameter, and decreasing shift in the smectic-A phase. The last observation is due to the preference of the xenon solutes to occupy the interlayer space where the density of the medium is reduced as compared to the layers. There are systematic deviations, however, in the magnitude of the shielding and its discontinuities, as well as the distribution of the solutes in the translationally ordered smectic-A phase, between the simulation and experiment. These deficiencies are believed to result from the lack of flexibility of the GB model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call