Abstract

The filamentous bacteriophage fd and its major coat protein are being studied by nuclear magnetic resonance (NMR) spectroscopy. 31P NMR shows that the chemical shielding tensor of the DNA phosphates of fd in solution is only slightly reduced in magnitude by motional averaging, indicating that DNA-protein interactions substantially immobilize the DNA packaged in the virus. There is no evidence of chemical interactions between the DNA backbone and the coat protein, since experiments on solid virus show the 31P resonances to have the same principle elements of its chemical shielding tensor as DNA. 1H and 13C NMR spectra of fd virus in solution indicate that the coat proteins are held rigidly in the structure except for some aliphatic side chains that undergo relatively rapid rotations. The presence of limited mobility in the viral coat proteins is substantiated by finding large quadrupole splittings in 2H NMR of deuterium labeled virions. The structure of the coat protein in a lipid environment differs significantly from that found for the assembled virus. Data from 1H and 13C NMR chemical shifts, amide proton exchange rates, and 13C relaxation measurements show that the coat protein in sodium dodecyl sulfate micelles has a native folded structure that varies from that of a typical globular protein or the coat protein in the virus by having a partially flexible backbone and some rapidly rotating aromatic rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.