Abstract

Nuclear Magnetic Resonance Imaging (MRI) can noninvasively map the spatial distribution of Nuclear Magnetic Resonance (NMR)-sensitive nuclei. This can be utilized to investigate the transport of fluids (and solute molecules) in three-dimensional model systems. In this study, MRI was applied to the buoyancy-driven transport of aqueous solutions, across an unstable interface in a three-dimensional box model in the limit of a small Peclet number (Pe<0.4). It is demonstrated that MRI is capable of distinguishing between convective transport (‘fingering’) and molecular diffusion and is able to quantify these processes. The results indicate that for homogeneous porous media, the total fluid volume displaced through the interface and the amplitude of the fastest growing finger are linearly correlated with time. These linear relations yielded mean and maximal displacement velocities which are related by a constant dimensionless value (2.4±0.1). The mean displacement velocity (U) allows us to calculate the media permeability which was consistent between experiments (1.4±0.1×10−7cm2).U is linearly correlated with the initial density gradient, as predicted by theory. An extrapolation of the density gradient to zero velocity enables an approximate determination of the critical density gradient for the onset of instability in our system (0.9±0.3×10−3 g/cm3), a value consistent with the value predicted by a calculation based upon the modified Rayleigh number. These results suggest that MRI can be used to study complex fluid patterns in three-dimensional box models, offering a greater flexibility for the simulation of natural conditions than conventional experimental modelling methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.