Abstract

Abstract This work reports our pioneering application of the nuclear magnetic resonance imaging (MRI) technique to the dynamic in situ studies of gas–liquid–solid reactions carried out in a catalytic trickle bed reactor at elevated temperature. The major advance of these studies is that MRI experiments are performed under reactive conditions. We have applied MRI to map the distribution of liquid phase inside a catalyst pellet as well as in a catalyst bed in an operating trickle-bed reactor. In particular, our studies have revealed the existence of the oscillating regimes of the heterogeneous catalytic hydrogenation reaction caused by the oscillations of the catalyst temperature and directly demonstrated the existence of the coupling of mass and heat transport and phase transitions with chemical reaction. The existence of the partially wetted pellets in a catalyst bed which are potentially responsible for the appearance of hot spots in the reactor has been also visualized. The combination of NMR spectroscopy with MRI has been used to visualize the spatial distribution of the reactant-to-product conversion within an operating reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.