Abstract
The pulsed nuclear magnetic resonance (NMR) method at a proton frequency of 25 MHz at temperatures of 22–160°C is used to detect the transverse magnetization decay in polyisoprene rubbers with various molecular masses, to determine the NMR damping time T 2, and to measure spin-lattice relaxation time T 1 and time T 2eff of damping of solid-echo signals under the action of a sequence of MW-4 pulses modified by introducing 180° pulses. The dispersion dependences of T 2eff obtained for each temperature are combined into one using the temperature-frequency equivalence principle. On the basis of the combined dispersion dependence of T 2eff and the data on T 2 and T 1, the correlation time spectrum of molecular movements is constructed. Analysis of the shape of this spectrum shows that the dynamics of polymer molecules can be described in the first approximation by the Doi-Edwards tube-reptation model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.