Abstract

Overexpression and hyperactivation of lymphocyte-specific protein tyrosine kinase (Lck) have been associated with leukemia development. We previously showed that, other than its known function as a cytoplasmic signal transducer, Lck also acts as a nuclear transcription factor in mouse leukemic cells. In the present study, we demonstrated the presence of nuclear Lck in human leukemic T cells and in primary cells. We further established a positive correlation between Lck nuclear localization and its kinase activity. Proteomic analysis identified CR6-interacting factor 1 (CRIF1) as one of the Lck-interacting proteins. CRIF1 and Lck association in the nucleus was confirmed both by immunofluorescence microscopy and co-immunoprecipitation in human leukemic T cells. Close-range interaction between Lck and CRIF1 was validated by in situ proximity ligation assay (PLA). Consistent with the role of nuclear CRIF1 as a tumor suppressor, CRIF1 silencing promotes leukemic T cell survival in the absence of growth factors. This protective effect can be recapitulated by endogenous Lck or reconstituted Lck in leukemic T cells. All together, our results support a novel function of nuclear Lck in promoting human leukemic T cell survival through interaction with a tumor suppressor. It has important implications in defining a paradigm shift of non-canonical protein tyrosine kinase signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call