Abstract

Raf1/c-Raf is a well-characterized serine/threonine-protein kinase that links Ras family members with the MAPK/ERK signaling cascade. We have identified a novel splice isoform of human Raf1 that causes protein truncation and loss of the C-terminal kinase domain (Raf1-tr). We found that Raf1-tr has increased nuclear localization compared with full-length Raf1, and this finding was secondary to reduced binding of Raf1-tr to the cytoplasmic chaperone FK506 binding protein 5. We show that Raf1-tr has increased binding to DNA-dependent protein kinase (DNA-PK), which inhibits DNA-PK function and causes amplification of irradiation- and bleomycin-induced DNA damage. We found that the human colorectal cancer cell line, HCT-116, displayed reduced expression of Raf1-tr, and reintroduction of Raf1-tr sensitized the cells to bleomycin-induced apoptosis. Furthermore, we identified differential Raf1-tr expression in breast cancer cell lines and showed that breast cancer cells with increased Raf1-tr expression become sensitized to bleomycin-induced apoptosis. Collectively, these results demonstrate a novel Raf1 isoform in humans that has a unique noncanonical role in regulating the double-stranded DNA damage response pathway through modulation of DNA-PK function.-Nixon, B. R., Sebag, S. C., Glennon, M. S., Hall, E. J., Kounlavong, E. S., Freeman, M. L., Becker, J. R. Nuclear localized Raf1 isoform alters DNA-dependent protein kinase activity and the DNA damage response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.