Abstract

Proteins with a charge periodicity of 28 residues (PCP28) were found recently in the human proteome, and many of the annotated PCP28 were located in the nucleus (Ke et al., Jpn. J. Appl. Phys. 2007). The physical properties of the amino acid sequences were analyzed to detect the difference in the physicochemistry between the nuclear and cytoplasmic PCP28 and develop a software system to classify the two types of PCP28. A significant difference in the global parameters from the entire sequence and the local parameters around a segment with the highest positive charge density was found between the nuclear and cytoplasmic PCP28. The global classification score included the densities of proline and cysteine, and the negative charge density, while the local score included the symmetry of the charge distribution, the density of cysteine, and the positive charge density. A prediction system was developed using the global and local scores, which possessed a sensitivity and specificity of 92% and 88%, respectively. The mechanism of translocation of proteins to the nucleus is discussed using the parameters relevant to the predictive system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.