Abstract
Abundant evidence now supports the existence of phospholipids in the nucleus that resist washing of nuclei with detergents. These lipids are apparently not in the nuclear envelope as part of a bilayer membrane, but are actually within the nucleus in the form of proteolipid complexes with unidentified proteins. This review discusses the experimental evidence that attempts to explain their existence. Among these nuclear lipids are the polyphosphoinositol lipids which, together with the enzymes that synthesize them, form an intranuclear phospholipase C (PI-PLC) signaling system that generates diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The isoforms of PI-PLC that are involved in this signaling system, and how they are regulated, are not yet entirely clear. Generation of DAG within the nucleus is believed to recruit protein kinase C (PKC) to the nucleus to phosphorylate intranuclear proteins. Generation of Ins(1,4,5)P3 may mobilize Ca2+ from the space between the nuclear membranes and thus increase nucleoplasmic Ca2+. Less well understood are the increasing number of variations and complications on the "simple" idea of a PI-PLC system. These include, all apparently within the nucleus, (i) two routes of synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; (ii) two sources of DAG, one from the PI-PLC pathway and the other probably from phosphatidylcholine; (iii) several isoforms of PKC translocating to nuclei; (iv) increases in activity of the PI-PLC pathway at two points in the cell cycle; (v) a pathway of phosphorylation of Ins(1,4,5)P3, which may have several functions, including a role in the transfer of mRNA out of the nucleus; and (vi) the possible existence of other lipid signaling pathways that may include sphingolipids, phospholipase A2, and, in particular, 3-phosphorylated inositol lipids, which are now emerging as possible major players in nuclear signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.