Abstract
Particle-$\gamma$ coincidence experiments were performed at the Oslo Cyclotron Laboratory with the $^{181}$Ta(d,X) and $^{181}$Ta($^{3}$He,X) reactions, to measure the nuclear level densities (NLDs) and $\gamma$-ray strength functions ($\gamma$SFs) of $^{180, 181, 182}$Ta using the Oslo method. The Back-shifted Fermi-Gas, Constant Temperature plus Fermi Gas, and Hartree-Fock-Bogoliubov plus Combinatorial models where used for the absolute normalisations of the experimental NLDs at the neutron separation energies. The NLDs and $\gamma$SFs are used to calculate the corresponding $^{181}$Ta(n,$\gamma$) cross sections and these are compared to results from other techniques. The energy region of the scissors resonance strength is investigated and from the data and comparison to prior work it is concluded that the scissors strength splits into two distinct parts. This splitting may allow for the determination of triaxiality and a $\gamma$ deformation of $14.9^{\circ} \pm 1.8^{\circ}$ was determined for $^{181}$Ta.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.